Unicorn = fantastic and mythical beast!

Quark Gluon Plasma: deconfined, chirally symmetric matter

Q: Have AA collisions @ RHIC made the QGP?

Triumph of experiment: wealth of precise data

In central AA, some quantities change by ~ 5 from lower energies
Geometrical evidence: matter at high energy density “eats” jets

Exp. surprise: the (high-pt) tail wags the (low-pt) body of the Unicorn
Even qualitatively, no theory explains all interesting features.

A: Some type of QGP has been created



Hunting for the “Unicorn” @ SPS, RHIC, LHC, GSI
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' Hunters = experimentalists. So:“All theorists are dogs...”

RHIC: Exp.'y, charm quarks “flow” (v2) like pions! sQGP!?
“Most Perfect Fluid on Earth”: Gyulassy, Heinz, Hirano, Teaney, Shuryak...

N.B.: but with wrong (bag) Equation of State!
Huovinen: v2 OK for bag EoS, but lattice EoS is as bad as purely hadronic EoS.



Lattice: SU(3) thermo., ¢ & c/o quarks

With NO quarks: |st order deconfining trans atT_d = 270 MeV * 5%

3 flavors of quarks: crossover, chiral sym restoration & deconfinement
T chiral ~ 175 MeV
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T = temperature, p(T) = pressure



Lattice SU(3) thermo.:“Flavor Independence”

Bielefeld: results are simple, p T .
. . . — | = universal
approximate universality: Dideal \ L4
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Perhaps: even with quarks, “transition” dominated by gluons
=> Polyakov loops (matrix model)



Non-perturbative QGP, Td = 3 Td

Polyakov loop ~I| in pert thy. Lattice:above 3 Td. NotTd => 3 Td.
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NpQGP: electric (not magnetic), not strong coupling

Giovannangeli; Laine & Schroder: in dim’y reduced 3D theory, compare
(spatial) string tension to that in full theory. Works very well!
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Only electric sector non.-pert., not magnetic.
QCD: o_sat 175 MeV ~ 0.28:at T=0, mom. scale ~ 2.2 GeV.
Not (very) strong coupling!



Deconfinement: | st order transition for N = 3

Lucini, Teper, Wenger ‘03,04, ‘05: Latent heat ~ N*2 for N= 4, 6, 8

0.003 | * N=2: Second Ol‘del‘
Latent heat/ | 6
NAD ooz | X4 | N=3:weakly |st order
ooot | x | N = 4:strongly st order
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Ordinary Ist order trans.: latent heat, masses nonzero at transition.

Perhaps: Large N near “Gross-Witten point’:
transition first order, but masses vanish.



Deconfinement and the Gross-Witten point

A. Dumitru, Y. Hatta, |. Lenaghan, K. Orginos, & RDP, hep-th/0311223: DHLOP

Aharony, Marsano, Minwalla, Papadodimas, & Van Raamsdonk:
hep-th/0310285: AMMPR ‘03; hep-th/0502149: AMMPR ‘05

A. Dumitru, J. Lenaghan, & RDP, hep-ph/0410294: DLP ‘04

A. Dumitru, RDP, D. Zschiesche, hep-ph/0505256: DPZ ‘05

M.Oswald & RDP, hep-ph/0510?: OP ‘05

Take “pure” SU(N) gauge theory, no dynamical quarks.
Rigorously, a deconfining phase transition at a temperature T.

Example: scalar field invariant under a global U(1) symmetry: ¢ — e’ O
Look for spontaneous breaking of U(1) symmetry through <gb> #~ (0

Start with the most general potential invariant under U(l),
use mean field theory to study phase diagram.



Mean field phase diagram

When N#3, all phase diagrams look alike:
Lines of Ist and 2nd order transitions meet at a tri-critical point

Voay = m[6)? + Aa(|6]2)? + Xe(|6]?)® + ...

Aq ]

m? =0 ., A >0 2nd order line =>

2
m° =X =0 Tri-critical point:

m? > 0 ;A < 0 | st order line: ------




Matrix mean field theory
Wilson loop: I — Peid § Auda”
SU(N) matrix: L'L=1,detL=1
Assume invariance under local SU(N) transf’s, Q: L — QL Q)
2mi/N 1,

Also global Z(N) symmetry: L — e

Consider transitions where Z(N) breaks, SU(N) doesn’t.



Deconfinement

Start with loop in fundamental representation:

1
ézﬁtrL

T # 0: thermal Wilson line => Polyakov loop. Invariant under SU(N).

Fundamental loop carries Z(N) charge; ~ (trace) “test” quark propagator.
Z(N) symmetric = confined: ) =0,T<Ty
Z(N) sym. broken = deconfined: <€> #0, T >1Ty

Deconfining transition at 1y



Matrix models

Matrix in the measure:

z - / AL exp(—V)

Adjoint loop: 1

Z(N) charge: fundamental loop = charge |. Adjoint loop = charge 0.

Most general potential sum of Z(N) neutral loops:
2
V:m gadj—FZ]‘ Iijfj ) €j =\

Adjoint loop “mass” term. Higher loops “interactions”



Large N matrix models

At large N, “factorization” =>

Zadj ~ ‘6‘2 -+ ]./N2

Assume loop potential powers of the fundamental loop:
V/N? = m?|0]* + ka(J€)*)? + ke (|€]*)° + ...

At large N:
confined phase:  (£) =0, (V)/N* =0
deconfined phase: () # 0, (V)/N?* ~ 1

(V) ~ free energy: ~ N*2 from deconfined gluons, ~| from hadrons.



I”

Large N: Vandermonde “potentia

Brezin, ltyzkson, Parisi & Zuber “78; Gross & Witten ‘8|
Kogut, Snow & Stone = KSS ‘82; Green & Karsch ‘84
AAMPR ‘03,‘05. DHLOP ‘03. DLP ‘04.

Choose ¢ = tr L/ N real & positive; minimize with respect to eigenvalues of L

Measure of matrix integral includes Vandermonde determinant
=>Vandermonde “potential’:

1
Vvim /N =+ 07 |, 1< 5

1 1 1
m/N* = —=log(2(1 —=10)) + = -
Vvam/ 2og(( ))+4 ; €>2

GW: the Vdm potential is discontinuous, of third order,at ¢ = 1/2



Gross-Witten point

Potentials ~ NA2 => at infinite N, vacua minima of

Veff =V + Vvam

Introduce m? =m? +1

For £<1/2 Veff/N2:—|—ﬁ7,2 (?

m> > 0: confined phase. < 0:deconfined phase.

Gross-Witten point: m* =0, ku=kg=...=0

Only non-trivial because of Vandermonde potential.
GW point unnatural: infinite number of couplings tuned to vanish.



Near the GWV point

All potentials have 3rd order discontinuity at ¢ = 1/2
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At the GWV point

At transition: order parameter jumps: <€> : 0 — 1/2 Latent heat nonzero
And masses vanish (asymmetrically) => “critical” |st order transition

New minimum = 3rd order discontinuity at 1/2
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0.025 |

0.015 |

0.005 |




Away from the GW point

Add negative quartic coupling:

V/N® =m0 — (|¢]*)°

Typical strongly |st order transition: masses nonzero at transition (below)
New minimum # 3rd order discontinuity at |/2
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GW = "ultra”-critical point

Phase diagram: tri-critical => Gross-Witten point.

Verr/N* =m0 + wa(|6°)* + ko (1€]°)° +... €< 1/2
Away from GW point,

ordinary |st or 2nd order transitions. K4 T
Only at GW point: = 2nd order line

Nonzero latent heat, jump in order parameter
Gross-Witten point

~ )
s m  —

AND zero masses

“Ultra”-critical as infinite # couplings vanish .

L 4

AMMPR “03, DLP 04 | stlorder line =>”0.
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Finite N: Vandermonde potential

Infinite N: discontinuity of 3rd order at |/2. Continuous at finite N.
Numerically, N=2 and 3 close to infinite N. DLP ‘04
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N = 3: matrix models

Finite N: Gross-Witten pt = ordinary |st order transition, masses always # 0
N=3: triplet loop with Z(3) charge

Z(3) neutral loops: octet, decuplet... Write potential as:
V/8 = m?|l3]? + ka(({3)° +c.c.) + ...

Cubic invariant => transition always |st order Svetitsky & Yaffe ‘82
KSS ‘82: at N=3 analogy of GW pt, jump in ({) to .485 ~ |/2
DLP ‘04: fit to lattice data for renormalized triplet loop (shown later)

Lattice: (¢) jumps to ~ .4 atT_d => N=3 transition close to N=3 GW point.



Lattice: N = 3 close to GW point

Take ren’d loops from lattice data.
Fit matrix model, with m* ~ Ty — T Only need small cubic term. DLP ‘04
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Renormalized Polyakov Loops

Gervais & Neveu ‘80. Polyakov ‘80. Dotsenko & Vergeles ‘80....
Kaczmarek, Karsch, Petreczsky & Zantow = KKPZ‘02 +... DHLOP ‘03.

Loop with no cusps: Loop with four cusps:

TT:imaginary time,
0=>1/T

Four dim’s: loops of length L renormalize by “mass” ren. (R = irreducible rep.)

ZR — Zprlr , Zr= exp(—dei”L + Yeusp)

Divergent mass: . , ,
“a”=lattice spacing, C_R = Casimir: @My =+Cgryg (1+#g9"+...)

Anomalous dimension Y=0 for straight loops; # 0 with cusps.



Ren.d Polyakov loops on lattice

DHLOP ‘03: compare two lattices, same temperature, different lattice spacing.

div

N_t = I/(aT) changes => obtain amp , ren'd loop:

— log (|(£R)]) = amE® Ny + f5" + fiet /N, +

fcont

(CR)| = e /7™ 4 ... ind f15% ~ 0

Coupling for transition changes with N_t
=> to obtain the same T at different N_t, must compute at different f3.
Doable, not trivial.

SU(3) Wilson action, N_t = 4,6,8,10; # spatial steps = 3 N_t
Lattice coupling constant B = 6/g"2: related to temperature by Non-Pert. Ren.



Bare triplet loop vs T, Nt
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Lattice SU(3): Renormalized Polyakov loops
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1.0 1'2 T T T T T T
0.9 1 [
0.8 | ~ 0.9 @ STd. —e : 1t i—~ 1.0 @ 3Td
s ‘ A
0.7 r ]
. . 08 |
50.6 : i p T
= 0.5 . 4 GC:" 06+
' 04 7 <= jump ~ .45
0.3 ¢ 1
0-21 ® 3} N=4 —e—
0.1+ A 5 N’C=8 ——
0ol tun 3Ty 6 ], Sdal . .
Tyt g 3 4 2 3 4 5 6
T/T T,
- o1 T, T/Ty —

Agree to ~ |0%: difference due to cusp renormalization!?



Lattice: SU(3) = SU() to ~25%

At large N, “factorization” => all loops product of fundamental (& anti-fund.)
Migdal & Makeenko ‘80, Eguchi & Kawai ‘82...Gross & Taylor ‘93

“Difference” loops vanish at infinite N i
A
(586 — <£6> — <€3>2 ~ 1/N
S R
2 2 }<= 8 ;
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0.1 }
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Corrections to factorization
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Above T_d: ) sl | . | | |
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Lattice: String tension vs. T, N= 3,4 & 6

Confined phase: string tension at T+0/at T=0 (y-axis)
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At fixed T/Td, ratio increases with N.
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Meyer & Teper ‘04

(Ty —T1/2)/ Ty ~ 0.8/N?

Window, ~ I/N*2, where GW point is infrared stable fixed point?



Nonzero quark density

Quarks act like background Z(3) field, ~ real part of loop.

Quark chemical potential, 4: background field for imaginary part of loop,
with imaginary coefficient! Karsch & Wyld ‘86, DPZ ‘05

h
Vo = —5(6“ U3 4+ et l5) = —h(cosh(u) Re 3 + 7sinh(p) Im £3)

In matrix model: sum over both L and charge conjugate, LN,

After summation, all contributions to partition function explicitly real.
Although both v.e.V’s real, unequal: (/3) # (/3)

Generalizes to dynamical quarks on lattice: sum over charge conjugate lattice.

Matrix model: about Y=0, one v.e.v. increases, the other decreases.
Test of lattice methods.



Fluctuations in matrix model

Infinity of “kinetic” terms. Three simplest couplings:

! 3¢ A\
£= Lk (14 250 6 ) + 20l

g 2g°

Looks like generalized non-linear sigma model:

L'L=1, detL=1, ¢y =trL/N , loq= (1—|trL|?)/(N? —1)
Compute B-functions in two spacetime dimensions: OP ‘05
2 4 2 2

Two out of three couplings asymptotically free.

Shows eff. theory of Wilson lines, for 2+1 dimensions, sensible in pert. thy.



“A possible eureka.’
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Lattice SU(3): divergent masses

DHLOP: Triplet, sextet, octet loops.
KKPZ: Triplet loop, Z_R from short distance behavior of two-point functions.

Casimir scaling of divergent masses at 3 Td.
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Bare octet
difference
loop/bare
octet loop:
violations
of factor.
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Bare loops don’t factorize
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